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Abstract -
Visual Simultaneous Localization and Mapping (V-

SLAM) is widely used in construction robots because it is
an efficient and inexpensive information acquisition method.
However, low-light construction scenes pose significant chal-
lenges for V-SLAM detection and positioning. In low-light
scenes such as underground garages or dim indoor scenes,
V-SLAM is difficult to detect enough valid feature points,
which causes navigation to fail. To address this issue, we
propose an Unsupervised V-SLAM Light Enhancement Net-
work (UVLE-Net) to enhance low-light images. After image
enhancement, we add a robust Shi-Tomasi method in ORB-
SLAM2 to detect feature points and use the sparse optical
flow algorithm to track the feature points. By using UVLE-
Net, the brightness and contrast of the images can be signif-
icantly increased, and feature points can be detected easily.
The optical flow and Shi-Tomasi method improve the abil-
ity of feature point extraction and tracking in low light. To
validate the robustness and superiority of our method in low-
light conditions, we conduct comparison experiments with
other enhancement techniques on published and real-world
construction datasets.
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1 Introduction
The productivity, quality, and other aspects of construc-

tion have significantly increased as a result of the rapid
development of construction robotics[1]. Autonomous
mobile robots can perform specific tasks by navigating the
construction site[2]. For example, a waste recycling robot
can inspect construction sites and find nails and screws[3].
Construction monitoring robots with scanning sensors and
cameras can move automatically and monitor progress [4].
The autonomous task of construction robots depends on
the navigation system. Mobile robots typically use Simul-
taneous Localization and Mapping (SLAM) technology
to generate maps of unknown environments while locat-
ing robots in the map. Construction robots can move and
work automatically using the SLAM system.

Construction robots need to collect enough on-site data
in order to operate autonomously. At present, laser point
clouds and RGB cameras are mainly used in positioning
and working system. Visual data contains rich data in-
formation, and provides a data basis for construction site
work. In comparison to other SLAM sensors like LiDAR,
the RGB camera is typically lightweight, inexpensive, and
contains rich visual information. State-of-the-art visual-
based algorithms such as ORB-SLAM2 perform well in
both datasets and real-world experiments[5]. However,
the SLAM algorithm is set in a well-lit environment[6][7].
The low-light construction sites pose significant challenges
for V-SLAM. For example, in an interior building envi-
ronment, a robot moving from an area with good lighting
to an area far away from artificial lighting facilities, such
as a backlit area or an underground garage with many oc-
clusions, can experience location errors or even failure.
Insufficient light in image shooting can significantly re-
duce the visibility of the image. V-SLAM methods rely on
feature point extraction, but low-light frames provide few
high-quality points. Therefore, V-SLAM systems would
lose their localization and detection abilities in low light
conditions due to low light and low contrast. Moreover,
due to dynamic lighting and halos in a dark scene, it is
difficult to track the same feature points as the lighting
changes. In order to improve the visibility of the low-light
construction environment and the usability of the current
robot navigation and positioning system, low-light images
need to be enhanced.

Although there have been some studies on enhancing
low-light images in the field of computer vision, most low-
light image enhancement techniques, such as LIME[8],
Low-light GAN[9], MSRCR[10], are optimized to en-
hance the image perception by human eyes rather than the
V-SLAM performance. The existing low-light image en-
hancement approaches have limited ability to address low-
light difficulties in construction robots V-SLAM, given
the following existing problems: (a) Due to the limita-
tion of manual parameter setting, the manual enhancement
method based on image features can only solve one of the
problems in challenging low-light construction scenarios.
(b) Data-driven enhancement methods require training on
pairs of data sets. In dynamic construction environments,
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it is challenging to collect paired data sets with exactly
the same content. (c) The existing low-light enhancement
methods lack research on feature point extraction of con-
struction robots V-SLAM. Therefore, it is necessary to
build a low-light enhanced method for construction robot
localization and mapping in low light.

In this paper, we propose an Unsupervised V-SLAM
Light Enhancement Network (UVLE-Net) to enhance low-
light images, which helps construction robots to locate
under low light. To address the issue of construction
robots in low light, we preprocess the image using the
deep neural network of the Retinex theor y. Following
image preprocessing, we detect feature points with the
Shi-Tomasi method and uniformly assign feature points to
track. Finally, we test UVLE-Net on the EuRoc dataset[11]
and construction environment. Experiments show that
our proposed method has better detection performance in
both open datasets and real low-light construction envi-
ronments. The contributions of our work are summarized
as follows: (a) We propose an UVLE-Net for low-light
construction robots to enhance frames’ lightness and con-
trast. It can help construction robots to get more gradient
information and feature points in low light. (b) We design
novel loss functions to train the image enhancement net-
work in an unsupervised way, thereby drastically reducing
the requirement of coupled image collection. (c) We com-
bine the Shi-Tomasi and sparse optical flow algorithm into
ORB-SLAM2 to detect and track the feature points in low-
light construction. It can usefully reduce the requirement
of ORB-SLAM2 feature points and improve positioning
accuracy in low-texture and low-light construction envi-
ronments.

Our approach is innovative in three aspects: (a) Based
on Retinex theory, we use a deep neural network to iter-
atively solve the reflectance map of the image, which has
better generalization performance in construction scenes.
(b) The enhancement network can be trained on any light-
ness dataset by designing unsupervised learning mode loss
functions. (c) The Shi-Tomasi and sparse optical flow
method is introduced in ORB-SLAM2 to increase its low-
light positioning ability.

2 Literature review
2.1 SLAM in construction robotics

In construction, SLAM has gained more and more at-
tention from researchers as an effective autonomous move-
ment and location method[12]. SLAM algorithms can be
divided into LiDAR-based and visual-based methods. Re-
garding LiDAR SLAM, Cebollada et al.[13] used a monoc-
ular camera with a 2-D laser sensor to locate and map the
underground space. It used the bilinear filter function to
estimate grid occupancy and the Gauss-Newton method
to optimize scan matching. However, these methods lack

closed-loop detection and optimization. Therefore, it is
not capable of eliminating accumulated localization er-
rors. Kim et al.[14] used 3-D laser SLAM to locate and
match point cloud objects. It is limited by laser detection
range and cannot be modelled in large construction scenes.
It costs lots of computing resources in point cloud location
and matching. Meanwhile, laser SLAM lacks the seman-
tic information of the maps, which cannot help robots to
do some work.

Regarding visual SLAM, it only needs inexpensive cam-
eras and a few computing resources. It is economical and
suitable for construction environments. Peel et al.[15]
combined adaptive monte carlo localization with SLAM,
using a small robot to detect bridge supports. Zhang et
al.[16] used mobile robots for large-scale 3D printing con-
struction. These robots mapped the environment using
Gmapping and adaptive monte carlo localization to lo-
cate themselves. Asadi et al.[17] proposed a mobile robot
platform equipped with an RGB camera. It used visual
SLAM and semantic segmentation techniques to navigate
daytime construction scenes. Although there has been a
lot of work to demonstrate the effectiveness of SLAM in
construction, most of them have been done under suffi-
cient lighting conditions. These methods will not work in
low-light conditions. In the low-light and low-texture con-
struction environment, visual SLAM hardly extracts and
tracks feature points due to the loss of gradient informa-
tion. So there are some robustness and reliability issues
with V-SLAM in a low-light environment.

2.2 Low-light image enhancement

The low-light image enhancement methods can be di-
vided into conventional and data-driven methods. Regard-
ing conventional methods, local statistics and intensity
mapping are the primary earlier conventional methods.
Histogram-based solutions expand the enhanced dynamic
range by modifying the light distribution of global or local
images[18]. Then, researchers used the Retinex theory
to enhance images. Reflection mapping was used as the
result of enhancement in Multiscale Retinex with Color
Restoration (MSRCR) [10]. To enhance image lighting
conditions, Fu et al.[19] used a weighted variational model
to estimate the reflectivity and illuminance of images. By
determining the RGB channel’s maximum pixel intensity
for each pixel, LIME[8] calculated the rough illumination
map. Most conventional methods depend on carefully
designed parameters and fail to generalize to various low-
light construction conditions.

With the development of deep neural networks, many
enhanced methods use deep learning techniques. For in-
stance, the first low-light enhanced network in the GAN
model was low-lightgan[9]. To simulate lighting im-
ages, it created a discriminator and generator using paired



Figure 1. Architecture of the low-light construction robot navigation system.

Table 1. Detailed architecture of UVLE-Net.
Input Dimensions Operator Output
Image 256 × 256 × 1 Conv+ReLU Conv1
Conv1 256 × 256 × 32 Conv+ReLU Conv2
Conv2 256 × 256 × 32 Conv+ReLU Conv3
Conv3 256 × 256 × 32 Conv+ReLU Conv4

Conv1+Conv4 256 × 256 × 64 Conv+ReLU Conv5
Conv2+Conv5 256 × 256 × 64 Conv+ReLU Conv6
Conv3+Conv6 256 × 256 × 64 Conv+ReLU Conv7
Conv4+Conv7 256 × 256 × 64 Conv+ReLU Conv8
Conv7+Conv8 256 × 256 × 8 Split �1 · · · ��

Image×�� - - Enhanced image

datasets. Zero-DCE [20] extended the solution by estab-
lishing numerous particular image curves based on zero-
inference. However, the model based on light recovery
curves exhibits unstable performance under different lev-
els of darkness. Therefore, in order to enhance the robust-
ness of the image, it is necessary to estimate the image
features.

3 Methodology

In this section, we first introduce the Retinex theory.
On this basis, we present an Unsupervised V-SLAM Light
Enhancement Network (UVLE-Net). Then, we introduce
our robot positioning mapping method based on ORB-
SLAM2. Figure 1 shows the overall structure of our
method. First, the low-light images are fed into the en-
hancement network. We incorporate the Retinex the-
ory into a deep neural network model to solve the re-
flectance iteratively. Our data-driven reflectance model
can enhance images accurately under various illumination
conditions. Then, ORB-SLAM2 computes gradients and
feature points for robot localization and mapping.

3.1 UVLE-Net for low-light image enhancement

The traditional Retinex theory simulates human color
perception. It is assumed that the image can be broken
down into two parts: reflectance and illumination. The
image � (�, �) ∈ ��×�×1 represents the source image,
then it can be decomposed by

� (�, �) = �(�, �) · � (�, �), (1)

where � (�, �) is the spatial distribution of source illumina-
tion, �(�, �) denotes the distribution of scene reflectance.
Reflectance denotes the intrinsic property of captured ob-
jects, which is consistent under all illumination conditions.
The illumination depicts the varying degrees of brightness
of objects.

We attempt to estimate the reflectance as guidance for
automatic low-light image enhancement, with the merits
of a simple and differentiable expression relying on the in-
put images and preserving the differences of neighbouring
pixels. Assuming that the illumination map under normal
light condition � is an identity matrix, according to the
effective formulation of Retinex, the reflectance for en-
hancement can be obtained. Arguably, the formulation of
�(�, �) is an ill-posed problem, and direct decomposition



results in unnatural artifacts. So we design the enhanced
model and use iterative algorithms to gradually eliminate
the impact, which is

log 𝑅𝑖 (𝑥, 𝑦) = log 𝐼𝑖 (𝑥, 𝑦) − log 𝐿𝑖 (𝑥, 𝑦), ∀𝑖 = 1 . . . 𝑛.
(2)

where 𝑛 is the number of iterations. Here we set 𝑛 = 5 em-
pirically, which we will detailedly discuss in the ablation
study.

The detailed architecture of the enhanced model is
demonstrated in TABLE 1. Input frames in SLAM are
grey images, so the UVLE-Net is designed to enhance
brightness in grey images. The proposed enhanced im-
ages model consists of 8 convolutional layers with skip
connections. Specifically, the first 7 layers have 32 con-
volutional kernels of size 3 × 3 and stride 1 followed by
the ReLU activation function, and the last one has 8 con-
volutional kernels of size 3 × 3 and stride 1 followed by
the Tanh activation function. Essentially, the last convo-
lutional layer splits the estimated lighting reflectance 𝑅𝑖 ,
and the given image 𝐼𝑖 is enhanced iteratively in terms of
the parameter maps 𝑅1 to 𝑅𝑛.

It is challenging to capture different lighting-paired im-
ages of a uniform dynamic construction scene. So we
adopt unsupervised learning to overcome this problem.
We devise several differentiable loss functions to facilitate
the unsupervised reflectance illumination model training.

Loss functions:
(1) Information Difference Loss. In robot location

tasks, the quality of feature point extraction is important.
Thereby, an information difference loss is devised to quan-
tify the differences between the improved image and the
original image, which is expressed as:

𝐿𝑖𝑑𝑙 = ∥𝑉 (𝐼𝑛) −𝑉 (𝐼0)∥2
2 , (3)

where 𝑉 (𝐼) is the feature extraction operator based on
VGG-16. 𝐼0 is the original raw image and 𝐼𝑛 is the cor-
responding enhanced image after 𝑛 time iterations. The
VGG network is leveraged here for its concise architecture
to compute information differences effectively.

(2) Exposure Control Loss. The stable exposure in-
tensity in SLAM is the key to the position. Therefore,
the exposure control loss is required to equalize exposure.
To obtain an average intensity 𝑌 , the image is split into
16∗16 non-overlapping local regions. According to expo-
sure fusion theory, a well-exposedness level 𝐸 is defined
as the grey level in grey space. As a result, the exposure
control loss, which measures the distance between average
intensity 𝑌 and well-exposedness level 𝐸 , is calculated as
follows:

𝐿𝑒𝑐𝑙 =
1
𝑀

𝑀∑︁
𝑚=1

|𝑌𝑚 − 𝐸 |, (4)

where 𝑀 represents the number of non-overlapping local
regions, 𝐸 is set as 0.6 empirically.

(3) Illumination Smoothness Loss. An illumination
smoothness loss is applied to the estimated reflectance
parameter map 𝑅𝑖 to ensure the smoothness of the illu-
mination component in grey space for maintaining the
monotonicity of pixel-level surrounding context during it-
eration, which is expressed as:

𝐿𝑖𝑠𝑙 =
1
𝑁

𝑁∑︁
𝑖=1

(
|∇𝑥𝑅𝑖 | + |∇𝑦𝑅𝑖 |

)2
, (5)

where 𝑁 represents the number of iterations, ∇ is the
first-order differential operator, accordingly ∇𝑥 and ∇𝑦

denote the horizontal and vertical gradient operations re-
spectively. We will explain them in the experimental sec-
tion.

To sum up, the total loss is expressed as:

𝐿 = 𝜔𝑎𝐿𝑖𝑑𝑙 + 𝜔𝑏𝐿𝑒𝑐𝑙 + 𝜔𝑐𝐿𝑖𝑠𝑙 , (6)

where 𝜔𝑎, 𝜔𝑏, and 𝜔𝑐 are the weights controlling the
significance of losses.

3.2 ORB-SLAM2 for localization and mapping

In this paper, ORB-SLAM2 is selected as the navigation
algorithm for construction robots. The workflow of ORB-
SLAM2 consists of four steps: detection of feature points,
stereo matching, feature tracking, and motion estimation.
When ORB-SLAM2 receives a frame, it first extracts the
feature points. A stereo-matching process follows feature
detection. Then the field points created in the previous
frame are projected to the current frame and matched with
the current frame to obtain several corresponding features.
The ORB-SLAM2 system relies on extracting and match-
ing many feature points, and all the foundations are built on
the accurate extraction of rich feature points. Therefore,
system position and pose tracking will fail when operating
in a construction scene with low texture and low light.

We adopt the Shi-Tomasi[21] and Kanade-Lucas-
Tomasi (KLT)[22] sparse optical flow algorithm to solve
these problems. The average distribution of feature points
in the low illumination environment reduces the matching
requirement of feature points. New feature points will be
added if not enough features are left after the uniform pro-
cedure to reach the necessary 200. The next frame will be
considered a new keyframe if the difference between the
two frames’ parallaxes is significant.

4 Experiments and results
The main focus of our work is the visual navigation

of construction robots to work reliably in low-light envi-
ronments. Therefore, we experiment on low-light open
datasets and real construction scenes. First, we train the
UVLE-Net model. Then we compare our method with



other low-light enhancement methods and evaluate their
accuracy on public datasets. Finally, we test them in real
low-light construction scenes.

4.1 UVLE-Net training and ablation experiment

The UVLE-Net is trained in an unsupervised way on
SICE[23]. SICE is a dataset consisting of 589 image
sequences and 4,413 high-resolution samples with signif-
icant exposure levels. We use multi-exposure datasets to
train the enhanced image model. It can reduce the im-
pact of varying lighting conditions. These datasets are
guaranteed to improve the generalization performance of
UVLE-Net under various lighting conditions in construc-
tion scenes. UVLE-Net training experiments are con-
ducted on a desktop Dell 7000 workstation. It has an Intel
I7-12700 CPU running at 3 GHz, 16 GB of RAM, and
an NVIDIA 3060 GPU. The network is optimized using
the ADAM optimizer with default parameters and a fixed
learning rate of 0.001. The weights of loss functions:
��,��, and �� are set as 0.01, 50, and 100 empirically.

Figure 2. Ablation study on the contribution of loss
functions.

Figure 3. Qualitative comparison of the different
iterations.

We use the same dataset and parameter to train the UVLE-
Net model with different loss functions to verify the effects

of each loss function, as shown in Figure 2. The loss of in-
formation difference ���� enhanced the features produced
from the input image, improving the model’s ability to
interpret semantics. Without the loss of exposure control
���� , the brightness decreases, and the low-light area fails
to recover. The illumination smoothness loss ���� acts as
a link between surrounding pixel-level changes, Ensuring
the unity of the overall brightness. We respectively test
n = 0, 1, 3, 5, 7 and 9 iterations. It reveals that the peak
performance appears when n equals five. Figure 3 de-
picts a visual example adapted to the different number of
iterations. Increasing the number of iterations improves
the lightness intuitively. However, when n > 5, perfor-
mance barely improves. To verify the availability of our
method in low light, we compare it with other advanced
enhancement methods in SLAM feature point extraction
and gradient calculation, as shown in Figure 4. It can
be seen that the global overexposure of MSRCR reduces
the information gradient and makes it difficult to extract
feature points. The LIME approach has local confusion
and ambiguity. Our method can improve brightness and
contrast steadily. It has clearer gradient information and
more feature points.

4.2 Low-light SLAM experiment

All experiments are conducted on a Ubuntu 22.04 lap-
top with an Intel I7-7700 CPU at 2.1Hz and ROS kinetic
energy 2GB of memory. Camera FPS in the EuRoc data
and real construction data are 20Hz, and UVLE-Net can
run at 22Hz on CPU and 67Hz on GPU. So it can run in
real time.

A.Public dataset experiment
We use MH sequences in EuRoc MAV as the test

datasets. The EuRoc MAV datasets consist of 5 sequence
micro aircraft vehicles (MAVs) flying rooms around two
different directions (V1 and V2 sequences) and one large
industrial (MH sequences). Depending on MAVs’ speed,
lighting, and texture, the sequences are classified as easy,
medium, and difficult. In MH datasets, there are many
low-light and complex light scenes. These indoor lighting
problems are very similar to low-light problems in con-
struction scenes, so they are used to test algorithms in
low-light environments. As shown in Figure 5, we use
MSRCR, LIME and UVLE-Net to enhance low-light im-
ages in MH datasets.

Table 2 compares the performance of UVLE-Net in
monocular sensors with original, MSRCR and LIME; all
tests are in KLT ORB-SLAM2. As shown in the table,
our method achieves lower error results in all sequences
than other enhanced methods, in most cases by a large
margin. In most sequences, using enhancement methods
can reduce the error. Nevertheless, MSRCR produces a
larger error because overexposure destroys gradient and



Figure 4. The gradient and feature point results of original, MSRCR, LIME and our method.

Figure 5. The results of image preprocessing in
MH datasets. MSRCR shows global overexposure,
LIME has local overexposure and blurring, and our
method steadily increases brightness, showing more
detail and no overexposure.

Table 2. Performance comparison in the EuRoC MH
datasets (Root mean square error in m).

Sequence Original MSRCR LIME Ours
MH01 easy 0.039 0.031 0.034 0.024
MH02 easy 0.036 0.028 0.033 0.025

MH03 medium 0.055 0.059 0.055 0.053
MH04 difficult 0.089 0.084 0.079 0.073
MH05 difficult 0.077 0.062 0.064 0.055

feature points in some normally lit scenes in MH-03. In
addition to the table, we demonstrate the result of the MH-
01 sequence on both 2D and 3D pose graphs in Figure 6
and Figure 7. In the pose graphs map, X-Z represents the
ground, and Y represents the height. From the enlarged
part in the figures, we can see that under the original low-
light environment, the SLAM algorithm has a significant
error in this section. MSRCR and LIME can reduce these
errors. The estimated trajectory of our method is almost

consistent with the real value.

Figure 6. 3D pose graph. The broken line is SLAM
ground truth. The blue line is MSRCR. The green
line is our method. The purple line is LIME. The
red line is the original frames(X-Z represents the
ground, and Y represents the height).

B.Real construction dataset experiment
We use the Intel Realsense 435 camera to conduct real

experiments in low-light indoor construction scenes. We
lack the pose motion capture system in construction scenes
to collect the actual moving position. So we only compare
our low-light enhanced method with the original method
in the real-world experiment. In Figure 8, we compare the
original image with our enhanced image. The processed
image has higher brightness and contrast. It shows more
gradient information and feature points. In order to fur-
ther verify the performance of our algorithm, we conduct
location estimation and mapping experiments. The results
are shown in Figure9. As can be seen, in the latter part of
the navigation (left part), the original frames cannot pro-
vide enough feature points for tracking and matching, so
the mapping is lost. In addition, there is a large deviation
in the corner part.



Figure 7. 2D pose graph. The broken line is SLAM
ground truth. The blue line is MSRCR. The green
line is our method. The purple line is LIME. The
red line is the original frames.

Figure 8. Original image captured by the Intel Re-
alsense 435 camera and processed image in UVLE-
Net.

Figure 9. 3D pose graph. The green line is the
original method in low light. The blue line is our
method(X-Z represents the ground, and Y represents
the height).

5 Conclusions

This paper proposes a visual-based monocular construc-
tion robot SLAM system for low-light challenges. We de-
sign a low-light enhancement network for robot construc-
tion scenes. The deep network based on Retinex theory
trains the enhancement model using self-supervised learn-
ing. This method improves the brightness and contrast of
the frame and helps the construction robot to track feature
points in low light environments. We add the Shi-Tomasi
and optical flow method to the ORB-SLAM2 system to
reduce the difficulty of feature point tracking in the SLAM
system. We validate our method in the public and real-
world datasets. The results show that our method has
better performance than MSRCR and LIME. Our method
solves the positioning failure problem in low-light con-
struction scenes. Our method can be run in real-time on
mobile computers and it is suitable for deploying robots
or portable devices in low-light environments.
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